SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ali H, Choi J. Sustainability (Basel) 2020; 12(1): e310.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/su12010310

PMID

unavailable

Abstract

A sinkhole is a ground surface depression that may occur with or without any indications on the surface and often pose danger to both properties and people. Leakage from underground pipe mains in urban areas may cause sudden ground subsidence or sinkholes. For a long time, researchers have been working on the hazard and risk assessment of sinkhole formation, especially natural sinkholes. However, much less work has been done on risk prediction and the mechanism of manmade sinkholes. In this study, different versions of small-scale sinkhole physical models were used in experiments to monitor ground surface settlement or collapse due to leakage from an underground pipeline. The factors under consideration were the type of subsurface soil profile, type of water flow, and leakage position in the pipeline. The ultimate goal was to use this information to predict the risk of sinkhole occurrence due to leakage from sewer or water pipelines under different subsurface soil conditions. The experimental results and statistical analysis showed that the subsurface soil strata conditions dominated the mechanism of sinkhole occurrence, although other factors also have contributed to the settlement. Then, this analysis was used to predict the sinkhole risk level under different conditions. The development of a reliable sinkhole risk prediction system can potentially minimize the risk to human lives and infrastructure. These findings can be applied to the development of a sinkhole risk index (SRI) that considers various other factors influencing sinkhole occurrence.

Keywords: Pipeline transportation


Language: en

Keywords

pipeline leakage; risk prediction; sewer pipeline; sinkhole; soil profile

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print