SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nan JF, Rezaei M, Mazhar R, Jaber F, Musharavati F, Zalnezhad E, Chowdhury MEH. Comput. Math. Methods Med. 2020; 2020: e6718495.

Copyright

(Copyright © 2020, Hindawi Publishing)

DOI

10.1155/2020/6718495

PMID

32724330 PMCID

Abstract

As many as 80% of patients with TAR die on the spot while out of those reaching a hospital, 30% would die within 24 hours. Thus, it is essential to better understand and prevent this injury. The exact mechanics of TAR are unknown. Although most researchers approve it as a common-sense deceleration injury, the exact detailed mechanism of TRA still remains unidentified. In this work, a deceleration mechanism of TAR was carried out using finite element analysis (FEA). The FE analysis aimed to predict internal kinematics of the aorta and assist to comprehend the mechanism of aorta injury. The model contains the heart, lungs, thoracic aorta vessel, and rib cage. High-resolution computerized tomography (HR CT scan) was used to provide pictures that were reconstructed by MIMICS software. ANSYS FE simulation was carried out to investigate the behavior of the aorta in the thoracic interior after deceleration occurred during a car crash. The finite element analysis indicated that maximum stress and strain applied to the aorta were from 5.4819e5 to 2.614e6 Pa and 0.21048 to 0.62676, respectively, in the Y-direction when the initial velocity increased from 10 to 25 m/s. Furthermore, in the X-direction when the velocity changed from 15 to 25 m/s, the stress and strain values increased from 5.17771e5 to 2.3128e6 and from 0.22445 to 0.618, respectively.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print