SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shalin G, Pardoel S, Nantel J, Lemaire ED, Kofman J. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020; 2020: 244-247.

Copyright

(Copyright © 2020, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/EMBC44109.2020.9176382

PMID

33017974

Abstract

Freezing of gait (FOG) is a sudden cessation of locomotion in advanced Parkinson's disease (PD). A FOG episode can lead to falls, decreased mobility, and decreased overall quality of life. Prediction of FOG episodes provides an opportunity for intervention and freeze prevention. A novel method of FOG prediction that uses foot plantar pressure data acquired during gait was developed and evaluated, with plantar pressure data treated as 2D images and classified using a convolutional neural network (CNN). Data from five people with PD and a history of FOG were collected during walking trials. FOG instances were identified and data preceding each freeze were labeled as Pre-FOG. Left and right foot FScan pressure frames were concatenated into a single 60x42 pressure array. Each frame was considered as an independent image and classified as Pre-FOG, FOG, or Non-FOG, using the CNN. From prediction models using different Pre-FOG durations, shorter Pre-FOG durations performed best, with Pre-FOG class sensitivity 94.3%, and specificity 95.1%. These results demonstrated that foot pressure distribution alone can be a good FOG predictor when treating each plantar pressure frame as a 2D image, and classifying the images using a CNN. Furthermore, the CNN eliminated the need for feature extraction and selection.Clinical Relevance- This research demonstrated that foot plantar pressure data can be used to predict freezing of gait occurrence, using a convolutional neural network deep learning technique. This had the added advantage of eliminating the need for feature extraction and selection.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print