SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Saxena N, Wang R, Dixit VV, Waller ST. Transp. Res. Rec. 2020; 2674(9): 371-382.

Copyright

(Copyright © 2020, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198120929332

PMID

unavailable

Abstract

Driving in congested traffic is a nuisance that not only results in longer travel times, but also triggers frustration and impatience among drivers. A few studies have modeled the effects of congested traffic in the resulting route choice behavior of car drivers. The studies used frequentist models such as discrete choice models to analyze large samples. However, these studies did not compare the inferences obtained from the frequentist and Bayesian approaches, particularly for datasets which are not sufficiently large. It has been shown by researchers that Bayesian models perform well, especially when the sample size is small. Thus, this paper develops and compares a multinomial logit (frequentist) and a Naïve Bayes (Bayesian) model on a mid-sized dataset of size around 100 participants which was obtained from a driving simulator experiment to understand driver's route choice under stop-and-go traffic. The results show that the prediction power of the Naïve Bayes model is much higher than the multinomial logit model (MNL). The Naïve Bayes model is also found to perform better than machine learning algorithms like the decision tree model. The findings from this study will be useful to researchers and practitioners as they should test both the approaches and select the appropriate model, particularly in the case of seemingly large datasets.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print