SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kumar S, Saini M, Goel M, Panda BS. J. Intell. Inf. Syst. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10844-020-00623-8

PMID

33071464 PMCID

Abstract

Information dissemination has changed rapidly in recent years with the emergence of social media which provides online platforms for people worldwide to share their thoughts, activities, emotions, and build social relationships. Hence, modeling information diffusion has become an important area of research in the field of network analysis. It involves the mathematical modeling of the movement of information and study the information spread pattern. In this paper, we attempt to model information propagation in online social networks using a nature-inspired approach based on a modified forest-fire model. A slight spark can start a wildfire in a forest, and the spread of this fire depends on vegetation, weather, and topography, which may act as fuel. On similar lines, we labeled users who haven't joined the network yet as Empty, existing users as Tree, and information as Fire. The spread of information across online social networks depends upon users-followers relationships, the significance of the topic, and other such features. We introduce a novel Burnt state to the traditional forest-fire model to represent non-spreaders in the network. We validate our method on six real-world data-sets extracted from Twitter and conclude that the proposed model performs reasonably well in predicting information diffusion.


Language: en

Keywords

Twitter; Forest-fire model; Information diffusion; Nature-inspired algorithm; Online social networks

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print