SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tian J, Zhang C, Wang Q. PLoS One 2020; 15(10): e0240359.

Copyright

(Copyright © 2020, Public Library of Science)

DOI

10.1371/journal.pone.0240359

PMID

33104724

Abstract

Considering that the Pc-Crash multibody dynamics software can reproduce the accident process accurately and obtain the collision parameters of pedestrian heads at the moment of head landing, the finite element analysis method can accurately analyze the injury of the pedestrian head when the boundary conditions are known. This paper combines the accident reconstruction method with the finite element analysis method to study the injury mechanism of pedestrian head impact on the ground in vehicle pedestrian collision accidents to provide a theoretical basis for pedestrian protection and the improvement of vehicle shapes. First, a real-life vehicle pedestrian collision is reproduced by Pc-Crash. The simulation results show that the rigid multibody model can accurately simulate the scene of the accident, then the speed and angle of the pedestrian head landing moment can be obtained at the same time. Second, the finite element model of human heads with a detailed facial structure is established and verified. Finally, the collision parameters obtained from the accident reconstruction are used as the boundary conditions to analyze the collision between the pedestrian head and the ground, and the biomechanical parameters, such as intracranial pressure, von Mises stress, shear stress and strain, can be determined. The results show that the stress wave will propagate inside and outside the skull and cause stress concentration in the skull and the brain tissue to varying degrees after the pedestrian head strikes the ground. When the stress exceeds a certain limit, it will cause different degrees of brain tissue injury.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print