SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Quanyi L, Xiaoying Y, Xu H. Fire Technol. 2020; 56(6): 2509-2523.

Copyright

(Copyright © 2020, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-020-00984-0

PMID

unavailable

Abstract

In order to investigate the thermal runaway mechanism of 18650 lithium ion batteries and the related hazards, an experimental platform for lithium ion battery fire and explosion is designed and built. The effects of different arrangements, including vertical 2 × 2 and vertical 4 × 1, and initial pressure (96 kPa and 61 kPa) on lithium ion battery thermal runaway are studied in this paper. Compared with the results of thermal runaway characteristics with two arrangements, a higher explosion pressure, a larger mass loss, more O2 consumption and more CO and CO2 production are observed of vertical 2 × 2 batteries due to the larger contact area between batteries. The explosion pressure of vertical 4 × 1 batteries decreases gradually with thermal runaway propagation. For vertical 2 × 2 batteries, the explosion pressure of battery C, D is about twice as large as battery A. The intensity of chemical reaction is more violent under 96 kPa which cause a lower onset temperature and a shorter onset time than that under 61 kPa. The thermal runaway propagation hazard can be reduced by decreasing the contact area between batteries. The results could provide useful guidance for the safety of lithium ion battery transportation in civil aviation.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print