SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Doubek F, Loosveld E, Happee R, de Winter JCF. J. Adv. Transp. 2020; ePub(ePub): ePub.

Copyright

(Copyright © 2020, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2020/6173150

PMID

unavailable

Abstract

In highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality of the scenario. This paper proposes a novel method of quantifying how well the driver executed an automation-to-manual takeover by comparing human behaviour to optimised behaviour as computed using a trajectory planner. A human-in-the-loop study was carried out in a high-fidelity 6-DOF driving simulator with 25 participants. The takeover required a lane change to avoid roadworks on the ego-lane while taking other traffic into consideration. Each participant encountered six different takeover scenarios, with a different time budget (5 s, 7 s, or 20 s) and traffic density level (low or medium).

RESULTS showed that drivers exhibited a considerably higher longitudinal and lateral acceleration than the optimised behaviour, especially in the short time budget scenarios. In scenarios of medium traffic density, the trajectory planner showed a moderate deceleration to let a vehicle in the left lane pass; many participants, on the other hand, did not decelerate before making a lane change, resulting in a dangerous emergency brake of the left-lane vehicle. In conclusion, our results illustrate the value of assessing human takeover behaviour relative to optimised behaviour. Using the trajectory planner, we showed that human drivers are unable to behave optimally in urgent scenarios and that, in some conditions, a medium deceleration, as opposed to a maximal or minimal deceleration, is optimal.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print