SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zanotto T, Hernandez ME, Medrano CN, Wilund KR, Sosnoff JJ. Front. Neurosci. 2020; 14: e610917.

Copyright

(Copyright © 2020, Frontiers Research Foundation)

DOI

10.3389/fnins.2020.610917

PMID

unavailable

Abstract

Falls and fall-related injuries are highly prevalent in people living with multiple sclerosis (MS). A multinational meta-analysis revealed that 56% of people with MS (pwMS) fall at least once in any 3-month period (Nilsagård et al., 2015) and 11-42% of falls are injurious (Gunn et al., 2014; Mazumder et al., 2014). Falls are of clinical concern as they increase the burden of morbidity and mortality (Grossman et al., 2018). Mobility impairments, progressive MS, and cognitive impairment are the most commonly reported risk factors for falls in this clinical population (Gunn et al., 2013; Giannı̀ et al., 2014; Sosnoff and Sung, 2015).

Despite the recent progress in disease-modifying medical treatments, as well as the numerous randomized controlled trials aiming to reduce falls, the evidence regarding effectiveness of interventions for fall-prevention in MS remains inconclusive (Hayes et al., 2019). Although such inconclusiveness is potentially related to the lack of methodological quality of intervention studies, it also highlights the need for accurate characterization of fall-etiology in this patient population. The success of fall-prevention programs is often based on their ability to effectively target underlying physiologic conditions. Therefore, in order to correctly prioritize rehabilitation strategies in MS, it is essential to identify all modifiable or partially-modifiable risk factors for falls.

Multiple sclerosis (MS) is characterized by damage to the central nervous system (CNS) as a result of inflammatory demyelination and neurodegeneration (Ghasemi et al., 2017). While such damage often translates into impairments of cognition and motor function, which are reasonably recognized as the main determinants of falls (Gunn et al., 2013), a growing body of research has explored the relationship between MS-related CNS damage and autonomic dysfunction (Racosta et al., 2015; Findling et al., 2020). Autonomic dysfunction can severely impact the quality of life in pwMS and often affects multiple organs and systems including the bladder, bowels, heart, as well as sexual and sudomotor functions (McDougall and McLeod, 2003; Lensch and Jost, 2011). A meta-analysis has concluded that cardiovascular autonomic dysfunction (CAD) is highly prevalent, with 19-42% of pwMS affected by this condition (Racosta et al., 2015). Importantly, CAD is one of the main drivers of orthostatic hypotension (OH) and contributes to symptoms of orthostatic intolerance, such as dizziness, which can directly or indirectly increase the risk of falling (Magkas et al., 2019). In this article, we aimed to outline the potential relationship between CAD and falls in pwMS...


Language: en

Keywords

accidental falls; cardiovascular autonomic dysfunction; dysautonomia; multiple sclerosis; orthostatic hypotension

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print