SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kim DY, Jung M, Kim S. Sensors (Basel) 2021; 21(1): e98.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s21010098

PMID

unavailable

Abstract

A vehicular network is composed of an in-vehicle network (IVN) and Internet of Vehicles (IoV). IVN exchanges information among in-vehicle devices. IoV constructs Vehicle-to-X (V2X) networks outside vehicles and exchanges information among V2X elements. These days, in-vehicle devices that require high bandwidth is increased for autonomous driving services. Thus, the spread of data for vehicles is exploding. This kind of data is exchanged through IoV. Even if the Ethernet backbone of IVN carries a lot of data in the vehicle, the explosive increase in data from outside the vehicle can affect the backbone. That is, the transmission efficiency of the IVN backbone will be reduced due to excessive data traffic. In addition, when IVN data traffic is transmitted to IoV without considering IoV network conditions, the transmission efficiency of IoV is also reduced. Therefore, in this paper, we propose an IoV access gateway to controls the incoming data traffic to the IVN backbone and the outgoing data traffic to the IoV in the network environment where IVN and IoV are integrated. Computer simulations are used to evaluate the performance of the proposed system, and the proposed system shows better performance in the accumulated average transmission delay.


Language: en

Keywords

Ethernet backbone; in-vehicle network; Internet of Vehicles; traffic control; vehicle gateway

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print