SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Keating CE, Browne KD, Cullen DK. Exp. Neurol. 2021; ePub(ePub): ePub.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.expneurol.2021.113649

PMID

unavailable

Abstract

Traumatic brain injury (TBI) can produce physical disruptions in the plasma membranes of neurons, referred to as mechanoporation, which lead to increased cell permeability. We suspect that such trauma-induced membrane disruptions may be influenced by the physical properties of the plasma membrane, such as elasticity or rigidity. These membrane properties are influenced by lipid composition, which can be modulated via diet, leading to the intriguing possibility of prophylactically altering diet to confer resiliency to this mechanism of acute neuronal damage in TBI. In this proof-of-concept study, we used three different diets-one high in polyunsaturated fatty acids suggested to increase elasticity (Fish Oil), one high in saturated fatty acids and cholesterol suggested to increase rigidity (High Fat), and one standard rat chow (Control)-to alter brain plasma membrane lipid composition before subjecting rats to lateral fluid percussion injury (FPI). Lipid analysis (n = 12 rats) confirmed that diets altered brain fatty acid composition after 4 weeks of feeding, with the Fish Oil diet increasing unsaturated fatty acids, and interestingly, the High Fat diet increasing omega-6 docosapentaenoic acid. One cohort of animals (n = 34 rats) was assessed immediately after FPI or sham injury for acute changes in neuronal membrane permeability in the injury-adjacent cortex. Surprisingly, sham animals fed Fish Oil had increased membrane permeability, suggesting altered passive membrane properties. In contrast, injured animals fed the High Fat diet displayed less intense uptake of permeability marker, suggesting a reduced extent of injury-induced plasma membrane disruption, although the density of affected cells matched the other diet groups. In a separate cohort survived for 7 days after FPI (n = 48 rats), animals fed the High Fat diet exhibited a reduced lesion area. At both time points there were no statistically significant differences in inflammation. Unexpectedly, these results indicate that the High Fat diet, as opposed to the Fish Oil diet, beneficially modulated acute plasma membrane permeability and resulted in a smaller lesion size at 7 days post-injury. Additional studies are necessary to determine the impact of these various diets on behavioral outcomes post-TBI. Further investigation is also needed to understand the physical properties in neuronal plasma membranes that may underlie increased resiliency to trauma-induced disruptions and, importantly, to understand how these properties may be influenced by targeted dietary modifications for vulnerable populations.


Language: en

Keywords

Traumatic brain injury; Diet; Fish oil; High fat; Lipid; Mechanoporation; Permeability; Plasma membrane

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print