SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Torija AJ, Chaitanya P, Li Z. J. Acoust. Soc. Am. 2021; 149(2): e835.

Copyright

(Copyright © 2021, American Institute of Physics)

DOI

10.1121/10.0003432

PMID

unavailable

Abstract

Unmanned aerial vehicle (UAV) technologies are rapidly advancing due to the unlimited number of applications from parcel delivery to people transportation. As the UAV market expands, community noise impact will become a significant problem for public acceptance. Compact drone architectures based on contra-rotating propellers bring significant benefits in terms of aerodynamic performance and redundancy to ensure vehicle control in case of component failure. However, contra-rotating propellers are severely noisy if not designed appropriately. In the framework of a perception-influenced design approach, this paper investigates the optimal rotor spacing distance configuration to minimise noise annoyance. On the basis of a series of psychoacoustic metrics (i.e., loudness, fluctuation strength, roughness, sharpness, and tonality) and psychoacoustic annoyance (PA) models, the optimal rotor axial separation distance (expressed as a function of propeller blade diameter) is at a range from 0.2 to 0.4. This paper also discusses the performance of currently available psychoacoustic models to predict propeller noise annoyance and defines further work to develop a PA model optimised for rotating systems.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print