SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li T, Chen D, Zhou H, Laval J, Xie Y. Transp. Res. B Methodol. 2021; 147: 67-91.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.trb.2021.03.003

PMID

unavailable

Abstract

Emerging automated vehicle (AV) technologies are increasingly being deployed around the world and it is only a matter of time before the transportation landscape changes dramatically. Unfortunately, those changes cannot be well predicted due to the lack of empirical data. But adaptive cruise control (ACC) vehicles are common in the market and can be used to fill this gap. In this paper, we aim to characterize the empirical car-following behaviors of a commercial ACC system and understand how ACC behaves in different conditions and the underlying impact mechanism. It is found that for a single ACC: (i) the ACC response time is comparable to human drivers but much larger than the ACC controller time gap and it exhibits small variance, (ii) the ACC response can amplify or dampen an oscillation, (iii) after the oscillation, the stabilization process can exhibit overshooting or undershooting, and (iv) these CF behaviors depend largely on the ACC headway setting, speed level, and leader stimulus, which produce the impacts directly and/or indirectly through the mediation of earlier ACC behaviors. For a three-vehicle platoon, our main finding is that the change from one ACC vehicle to the next is progressive for oscillation growth, and regressive for deceleration, acceleration, and overshooting. This implies that in long platoons, oscillation amplitude tends to exacerbate very quickly, which forces ACC vehicles further upstream to apply very strong braking followed by a strong acceleration. This can cause significant overshooting and safety hazards.


Language: en

Keywords

Adaptive cruise control; Automated vehicles; Car-following; Oscillation amplification and dampening

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print