SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bourke NJ, Yanez Lopez M, Jenkins PO, de Simoni S, Cole JH, Lally P, Mallas EJ, Zhang H, Sharp DJ. Brain Commun. 2021; 3(2): fcab006.

Copyright

(Copyright © 2021, Oxford University Press)

DOI

10.1093/braincomms/fcab006

PMID

33981994

Abstract

Cognitive impairment after traumatic brain injury remains hard to predict. This is partly because axonal injury, which is of fundamental importance, is difficult to measure clinically. Advances in MRI allow axonal injury to be detected after traumatic brain injury, but the most sensitive approach is unclear. Here, we compare the performance of diffusion tensor imaging, neurite orientation dispersion and density-imaging and volumetric measures of brain atrophy in the identification of white-matter abnormalities after traumatic brain injury. Thirty patients with moderate-severe traumatic brain injury in the chronic phase and 20 age-matched controls had T1-weighted and diffusion MRI. Neuropsychological tests of processing speed, executive functioning and memory were used to detect cognitive impairment. Extensive abnormalities in neurite density index and orientation dispersion index were observed, with distinct spatial patterns. Fractional anisotropy and mean diffusivity also indicated widespread abnormalities of white-matter structure. Neurite density index was significantly correlated with processing speed. Slower processing speed was also related to higher mean diffusivity in the corticospinal tracts. Lower white-matter volumes were seen after brain injury with greater effect sizes compared to diffusion metrics; however, volume was not sensitive to changes in cognitive performance. Volume was the most sensitive at detecting change between groups but was not specific for determining relationships with cognition. Abnormalities in fractional anisotropy and mean diffusivity were the most sensitive diffusion measures; however, neurite density index and orientation dispersion index may be more spatially specific. Lower neurite density index may be a useful metric for examining slower processing speed.


Language: en

Keywords

traumatic brain injury; diffuse axonal injury; diffusion tensor; neurite density; orientation dispersion

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print