SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kulas A, Zalewski P, Hortobagyi T, Devita P. J. Biomech. 2007; 41(1): 180-185.

Affiliation

Department of Health Education and Promotion, East Carolina University, 249 Ward Sports Medicine Building, Greenville, NC 27858, USA.

Copyright

(Copyright © 2007, Elsevier Publishing)

DOI

10.1016/j.jbiomech.2007.06.027

PMID

17678932

Abstract

Although both trunk mass and trunk position have the potential to affect lower extremity biomechanics during landing, these effects are not well understood. Our overall hypothesis stated that both trunk mass and trunk position affect lower extremity biomechanics in landing. Thus, our purpose was to determine the effects of an added trunk load and kinematic trunk adaptation groups on lower extremity joint kinematics, kinetics, and energetics during drop-landings. Twenty-one recreationally active subjects were instrumented for biomechanical analysis. Subjects performed two sets of eight double-limb landings with and without 10% body weight added to the trunk. On lower extremity dependent variables, 2(condition: no load, trunk load)x2(group: trunk extensors vs. trunk flexors) ANOVAs were performed. Condition by group interactions at the hip showed differing responses to the added trunk load between groups where the trunk extensor group decreased hip extensor efforts ( downward arrow11-18%) while the trunk flexor group increased hip extensor efforts ( upward arrow14-19%). The trunk load increased biomechanical demands at the knee and ankle regardless of trunk adaptation group. However, the percent increases in angular impulses and energy absorption in the trunk extensor group were 14-28% while increases in the trunk flexor group were 4-9%. Given the 10% body weight added to the trunk, the 14-28% increases at the knee and ankle in the trunk extensor group were likely due to the reduced hip extensor efforts during landing. Overall these findings support our overall hypothesis that both trunk mass and trunk position affect lower extremity biomechanics during vertically oriented landing tasks.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print