SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

England D, Ruddy KL, Dakin CJ, Schwartz SE, Butler B, Bolton DAE. Brain Sci. 2021; 11(5).

Copyright

(Copyright © 2021, Switzerland Molecular Diversity Preservation International (MDPI) AG)

DOI

10.3390/brainsci11050643

PMID

unavailable

Abstract

In young adults, performance on a test of response inhibition was recently found to be correlated with performance on a reactive balance test where automated stepping responses must occasionally be inhibited. The present study aimed to determine whether this relationship holds true in older adults, wherein response inhibition is typically deficient and the control of postural equilibrium presents a greater challenge. Ten participants (50+ years of age) completed a seated cognitive test (stop signal task) followed by a reactive balance test. Reactive balance was assessed using a modified lean-and-release system where participants were required to step to regain balance following perturbation, or suppress a step if an obstacle was present. The stop signal task is a standardized cognitive test that provides a measure of the speed of response inhibition called the Stop Signal Reaction Time (SSRT). Muscle responses in the legs were compared between conditions where a step was allowed or blocked to quantify response inhibition of the step. The SSRT was significantly related to leg muscle suppression during balance recovery in the stance leg. Thus, participants that were better at inhibiting their responses in the stop signal task were also better at inhibiting an unwanted leg response in favor of grasping a supportive handle. The relationship between a seated cognitive test using finger responses and leg muscle suppression when a step was blocked indicates a context-independent, generalized capacity for response inhibition. This suggests that a simple cognitive test such as the stop signal task could be used clinically to predict an individual's capacity for adapting balance reactions and fall risk. The present results provide support for future studies, with larger samples, to verify this relationship between stop signal reaction time and leg response during balance recovery.


Language: en

Keywords

aging; executive function; reactive balance; response inhibition; stepping

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print