SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ciuffo B, Mattas K, Makridis M, Albano G, Anesiadou A, He Y, Josvai S, Komnos D, Pataki M, Vass S, Szalay Z. Transp. Res. C Emerg. Technol. 2021; 130: e103305.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.trc.2021.103305

PMID

unavailable

Abstract

Connected and automated vehicles (CAVs) promise to significantly improve road traffic. To a certain extent, this situation is similar to the expectations at the end of the last century about the positive effects that the introduction of Adaptive Cruise Control (ACC) systems would have had on motorway traffic. The parallelism is interesting because ACC equipped vehicles represent the first level of vehicle automation and are now widely available on the market. In this light, studying ACC impacts can help to anticipate potential problems related to its widespread application and to avoid that AVs and CAVs will lead to the same problems. Only a few test-campaigns had been carried out studying the ACC impacts under real-world driving conditions in quantitative terms. To bridge this gap, the Joint Research Centre of the European Commission has organized a number of experimental campaigns involving several ACC-equipped vehicles to study different implications of their widespread. In this context, the present paper summarizes the outcomes of a test campaign involving 10 commercially available ACC-equipped vehicles. The test campaign has been executed in two different test-tracks of the ZalaZONE proving ground, in Hungary. The tests have been carried out at low-speeds (30-60 km/h) and have involved platoons of vehicles of different brands and different powertrains, which were tested in a variety of vehicle orders and with different settings of their ACC systems. Test results have been used to derive information about the properties of the different ACC systems, to study their string stability, to study the effect of ACC systems on traffic flow, and to draw inference about the possible implications on energy consumption and traffic safety.

RESULTS confirm the previous findings in terms of string instability of the ACC and highlight that in the present form, ACC systems will possibly lead to higher energy consumption and introduce new safety risks when their penetration in the fleet increases. However, they also highlight that the materialization of the above findings for AVs depends on the operational logic that manufacturers will adopt during the implementation phase. Therefore, results suggest that functional requirements to guarantee string stability and in general to not disrupt the normal flow of traffic should be introduced both for ACC and for any automated system that will be placed on the market in the future.


Language: en

Keywords

Adaptive cruise control; Automated vehicles; Car-following experiments; Energy consumption; Traffic hysteresis; Traffic string instability; Vehicle safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print