SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chauhan R, Dhamaniya A, Arkatkar S. Transp. Res. Rec. 2021; 2675(12): 1356-1378.

Copyright

(Copyright © 2021, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981211033863

PMID

unavailable

Abstract

A higher degree of heterogeneity in vehicle class and drivers, coupled with non-lane-based driving habits, creates several challenges in traffic flow analysis. This study investigates vehicles' microscopic driving behavior at signalized intersections operating under weak lane discipline with mixed traffic (disordered) conditions. For this purpose, a comprehensive vehicular trajectory data set is developed from field-recorded video footage using a semi-automated tool for data extraction. Microscopic parameters such as relative velocity, spacing between vehicles, following time, lane preference, longitudinal and lateral speed profile, hysteresis evidence, and lateral movement of different vehicle classes during different traffic phases are presented in the study. The data is then segregated into three flow conditions: stopped flow, saturated flow, and unaffected flow. It is found that smaller vehicles prefer near-side lanes over far-side lanes. Motorized three-wheeler (3W) and motorized two-wheeler (2W) vehicle classes exhibit the greatest lateral velocity, lateral movement, and aggressiveness. This results in several interactions between vehicles as a function of different leader-follower vehicle pairs. Signalized intersections with more heterogeneity in traffic composition, especially higher composition of 2W and 3W vehicle classes, exhibit higher levels of aggressive driving behavior that might lower safety standards. As a practical application, ranges of various driving behavior parameter values for different leader-follower combinations and traffic conditions are quantified in the study. The observations and results are expected to help better understand prevailing driving behavior in disordered traffic and contribute toward robust calibration of microscopic traffic flow models for better replicating disordered traffic conditions at signalized intersections.


Language: en

Keywords

Operations; traffic flow; Traffic flow theory and characteristics ACP50

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print