SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang X, Lauber L, Liu H, Shi J, Wu J, Pan Y. PLoS One 2021; 16(12): e0259472.

Copyright

(Copyright © 2021, Public Library of Science)

DOI

10.1371/journal.pone.0259472

PMID

34937064

Abstract

The travel trajectory data of mobile intelligent terminal users are characterized by clutter, incompleteness, noise, fuzzy randomness. The accuracy of original data is an essential prerequisite for better results of trajectory data mining. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the most effective trajectory data mining methods, but the selection of input parameters often limits it. The Sage-Husa adaptive filtering algorithm effectively controls the error range of mobile phone GPS data, which can meet the positioning accuracy requirements for DBSCAN spatial clustering having the advantages of low cost and convenient use. Then, a novel cluster validity index was proposed based on the internal and external duty cycle to balance the influence of the distance within-cluster, the distance between clusters, and the number of coordinate points in the process of clustering. The index can automatically choose input parameters of density clustering, and the effective clustering can be formed on different data sets. The optimized clustering method can be applied to the in-depth analysis and mining of traveler behavior trajectories. Experiments show that the Sage -Husa adaptive filtering algorithm proposed further improves the positioning accuracy of GPS, which is 17.34% and 15.24% higher eastward and northward, 14.25%, and 18.17% higher in 2D and 3D dimensions, respectively. The number of noise points is significantly reduced. At the same time, compared with the traditional validity index, the evaluation index based on the duty cycle proposed can optimize the input parameters and obtain better clustering results of traveler location information.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print