SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Haj Salah I, Mukku VD, Kania M, Assmann T. Future Transp. 2021; 1(3): 505-532.

Copyright

(Copyright © 2021, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/futuretransp1030027

PMID

unavailable

Abstract

Finding a sustainable mobility solution for the future is one of the most competitive challenges in the logistics and mobility sector at present. Policymakers, researchers, and companies are working intensively to provide novel options that are environmentally friendly and sustainable. While autonomous car-sharing services have been introduced as a very promising solution, an innovative alternative is arising: the use of self-driving bikes. Shared autonomous cargo-bike fleets are likely to increase the livability and sustainability of the city, as the use of cargo-bikes in an on-demand mobility service can replace the use of cars for short-distance trips and enhance connectivity to public transportation. However, more research is needed to develop this new concept. In this paper, we investigate different rebalancing strategies for an on-demand, shared-use, self-driving cargo-bikes service (OSABS). We simulate a case study of the system in the inner city of Magdeburg using AnyLogic. The simulation model allows us to evaluate the impact of rebalancing on service level, idle mileage, and energy consumption. We conclude that the best proactive rebalancing strategy for our case study is to relocate bikes only between neighboring regions. We also acknowledge the importance of bike relocation to improve service efficiency and reduce fleet size.


Language: en

Keywords

autonomous bikes; fleet management; future mobility; vehicle rebalancing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print