SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Apu N, Sinha R. Int. J. Disaster Resil. Built Environ. 2020; 12(4): 425-442.

Copyright

(Copyright © 2020, Emerald Group Publishing)

DOI

10.1108/IJDRBE-06-2020-0059

PMID

unavailable

Abstract

PURPOSE Increasing awareness of the society and complying with design requirements of building codes for seismic safety of structures and inhabitants during severe earthquakes are the primary purpose of seismic analysis. This study aims to present the variability in seismic fragility functions for frames of different heights for the most vulnerable condition of structure using nonlinear time history analysis.

DESIGN/METHODOLOGY/APPROACH A total of 4, 8 and 20 stories reinforced concrete (RC) moment-resisting two-dimensional frames are considered for this study. Ground motions (GM) are selected as per the conditional mean spectrum and these are conditioned on a target spectral acceleration at the concern time period. RC frames are designed and detailed as per Indian standards. A concentrated plasticity approach is adopted for non-linear analytical modeling of the RC frames. Deterministic capacity limit states in terms of maximum inter-story drift ratio are considered for different damage states. Fragility functions have been derived following a lognormal distribution from incremental dynamic analysis curves. Finally, the maximum likelihood estimation of the response is obtained for fitting curves with observed fragility.

FINDINGS The fragility functions of the three structures reflect that under critical or extreme conditions of GM the taller buildings have higher fragility than the shorter buildings for each level of limit states even though both are designed to meet their code-level design forces. Research limitations/implications The study is conducted on the extreme scenario of GM conditioned on the fundamental time period of each building, whereas comparison can be developed by selecting various methodologies of GM set. The probabilistic capacity model can be developed for future studies to check the fragility variation with deterministic and probabilistic capacity.

ORIGINALITY/VALUE The investigation endeavors to present a comprehensive fragility assessment framework by analytical method. The outcome will be useful in the development of a disaster management strategy for new or old buildings and the response of seismic force with a variation of the building's height. The findings will also be useful for updating the earthquake-resistant building codes for the new building construction in a similar context.


Language: en

Keywords

Conditional mean spectrum; Fragility analysis; Ground motion suite; Incremental dynamic analysis; Performance-based design; RC frames building

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print