SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tan B, Li X, Zhang X, Zhang Z, Zhang H. ACS Omega 2022; 7(4): 3359-3368.

Copyright

(Copyright © 2022, American Chemical Society)

DOI

10.1021/acsomega.1c05528

PMID

35128246

PMCID

PMC8811917

Abstract

Coal bunkers are relatively closed systems. Due to their own oxidation characteristics and the increase of temperature, spontaneous combustion will occur beyond the spontaneous combustion period. Moreover, spontaneous combustion of coal bunkers is a disaster caused by multifield coupling, so it is imperative to carry out inerting fire prevention and fire extinguishing. Based on this fact, combined with the actual situation in Huanghua Port, this paper establishes a two-dimensional geometric model of a coal bunker, selects CO(2) as the inert gas sprayed in the coal bunker, determines the position of the inert gas port of the coal bunker hopper, and studies the influence of fireproof and fire-extinguishing inerting on coal bunker inerting. The results show that the arrangement of the inert gas port of the bunker hopper outside the bunker is more conducive to the diffusion of CO(2) gas in the bunker. In about 35-41 days, the inerting temperature decreases slowly between 345 and 350 K. After 41 days, the maximum temperature of the coal bunker decreases rapidly and the spontaneous combustion of the coal bunker is completely controlled. Under the preset conditions, the best fire inerting time is 32.3 days after coal storage.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print