SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chung VWJ, Dias L, Booth G, Cripton PA. Clin. Biomech. 2022; 94: e105628.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.clinbiomech.2022.105628

PMID

35358794

Abstract

BACKGROUND: Cycling helmets often incorporate elements aimed to dissipate rotational energies, which is widely acknowledged to play a key role in concussion mechanics. In this study, we investigated the mechanics of an oblique helmet test protocol that induced helmet rotation while using it to evaluate the effectiveness of three helmet models: two standard expanded polystyrene helmets and a commercially-available helmet equipped with a liner designed to mitigate linear and rotational energies.

METHODS: Helmets equipped with WaveCel were tested against two expanded polystyrene helmet models through guided drops using a Hybrid III (HIII) head-and-neck surrogate. The three helmet models were tested across four impact conditions (n = 5) of different speeds and impact surface angles.

FINDINGS: Across all tests, a similar sequence of head motion was observed - first a flexion phase followed by an extension phase. The extension phase lacked evidence of biofidelity and was likely attributable to the energy stored in the neckform during the flexion phase; it was therefore neglected from analysis.

RESULTS showed WaveCel reduced the probability of AIS2 head injury across all tests (3 to 27% reductions in 4.8 m/s impacts; 36 to 37% reductions in 6.2 m/s impacts).

INTERPRETATION: The two-phased response of the HIII suggests that boundary condition selection can influence results and should thus be reported in studies using similar methods. While this protocol involved both axial and tangential impact components and were thus representative of real-world collisions, the efficacy of WaveCel should be further investigated through additional laboratory studies and tracking real-world cycling injury statistics.


Language: en

Keywords

Cycling; Concussion; Traumatic brain injury; Helmet testing; Injury biomechanics

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print