SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gosine P, Komisar V, Novak AC. Hum. Factors 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Human Factors and Ergonomics Society, Publisher SAGE Publishing)

DOI

10.1177/00187208221082439

PMID

35465756

Abstract

OBJECTIVE: To determine the effect of handrail cross-section on the speed and quality of reach-to-grasp movements following balance loss in younger and older adults.

BACKGROUND: Grasping a handrail is a common strategy for balance recovery. For handrails to be effective, the design must enable fast and accurate reactive grasping. Little is known about the effect of handrail cross-section on the timing or quality of the reach-to-grasp movement following balance loss.

METHODS: Twenty-four younger and 16 older adults experienced incrementally increasing magnitudes of perturbations in the forward and backward direction until they were no longer able to recover balance. We analyzed the last trial where the participant could recover using only the handrail, without stepping or relying on the harness, the maximum withstood perturbation (MWP). Seven handrail cross-sections were tested.

RESULTS: Handrail cross-section did not affect the speed or timing of the reach-to-grasp reaction for younger or older adults. However, handrail cross-section affected the MWP, the grip types used, and the likelihood of making an error or adjustment when grasping. The greatest MWP and fewest errors occurred with 1.5" round handrails.

CONCLUSION: The absence of common strategies for accurately grasping complex shapes (reaching more slowly), combined with the higher frequency of errors with larger handrails, suggests that both older and younger adults prioritized quickly reaching the handrail over prehension during reach-to-grasp balance reactions. APPLICATION: This work provides new insights on the effect of age and handrail cross-sectional design on reach-to-grasp reactions to recover balance, which can inform safer handrail design standards.


Language: en

Keywords

injury prevention; aging; balance recovery; falls; handrail design

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print