SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Algomaiah M, Li Z. J. Transp. Eng. A: Systems 2022; 148(2): e04021107.

Copyright

(Copyright © 2022, American Society of Civil Engineers)

DOI

10.1061/JTEPBS.0000632

PMID

unavailable

Abstract

This paper explores the efficiency of a novel merging system based on a cooperative late merge strategy (CLMS) to mitigate the capacity reduction in work zones due to lane closure. Cooperative late merge strategies in connected vehicles (CV) and connected and autonomous vehicles (CAV) environments are formulated to enhance throughput by reducing gaps and increasing the synchronized speed in the work zone. We propose decentralized and centralized systems based on vehicle-to-vehicle and vehicle-to-infrastructure communication. The decentralized CLMS incorporates a modified lane-changing model to reflect the cooperative feature under the CV environment. The centralized CLMS is developed to further optimize the work zone throughput based on gap reduction and speed harmonization features enabled by CAV. The results prove that the decentralized CLMS outperforms other systems by increasing throughput as well as reducing delay and queue length. The centralized CLMS demonstrated substantial improvements compared to other systems. The simulation results prove that the decentralized CLMS improves capacity by 17% and the centralized CLMS by 45%, when compared to a traditional work zone system.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print