SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhu YZ, Zhang J, Cheng Q, Yu HX, Deng KF, Zhang JH, Qin ZQ, Zhao J, Sun JH, Huang P. Fa Yi Xue Za Zhi 2022; 38(1): 31-39.

Copyright

(Copyright © 2022, Si fa bu Si fa jian ding ke xue ji shu yan jiu suo)

DOI

10.12116/j.issn.1004-5619.2021.411001

PMID

35725701

Abstract

OBJECTIVES: To select four algorithms with relatively balanced complexity and accuracy among deep learning image classification algorithms for automatic diatom recognition, and to explore the most suitable classification algorithm for diatom recognition to provide data reference for automatic diatom testing research in forensic medicine.

METHODS: The "diatom" and "background" small sample size data set (20 000 images) of digestive fluid smear of corpse lung tissue in water were built to train, validate and test four convolutional neural network (CNN) models, including VGG16, ResNet50, InceptionV3 and Inception-ResNet-V2. The receiver operating characteristic curve (ROC) of subjects and confusion matrixes were drawn, recall rate, precision rate, specificity, accuracy rate and F1 score were calculated, and the performance of each model was systematically evaluated.

RESULTS: The InceptionV3 model achieved much better results than the other three models with a balanced recall rate of 89.80%, a precision rate of 92.58%. The VGG16 and Inception-ResNet-V2 had similar diatom recognition performance. Although the performance of diatom recall and precision detection could not be balanced, the recognition ability was acceptable. ResNet50 had the lowest diatom recognition performance, with a recall rate of 55.35%. In terms of feature extraction, the four models all extracted the features of diatom and background and mainly focused on diatom region as the main identification basis.

CONCLUSIONS: Including the Inception-dependent model, which has stronger directivity and targeting in feature extraction of diatom. The InceptionV3 achieved the best performance on diatom identification and feature extraction compared to the other three models. The InceptionV3 is more suitable for daily forensic diatom examination.


Language: zh

Keywords

drowning; forensic pathology; artificial intelligence; deep learning; diatom test; convolutional neural network

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print