SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Al-Ramini A, Takallou MA, Piatkowski DP, Alsaleem F. Environ. Plan. B Urban Anal. City Sci. 2022; 49(6): 1612-1630.

Copyright

(Copyright © 2022, SAGE Publishing)

DOI

10.1177/23998083211066103

PMID

unavailable

Abstract

Most cities in the United States lack comprehensive or connected bicycle infrastructure; therefore, inexpensive and easy-to-implement solutions for connecting existing bicycle infrastructure are increasingly being employed. Signage is one of the promising solutions. However, the necessary data for evaluating its effect on cycling ridership is lacking. To overcome this challenge, this study tests the potential of using readily-available crowdsourced data in concert with machine-learning methods to provide insight into signage intervention effectiveness. We do this by assessing a natural experiment to identify the potential effects of adding or replacing signage within existing bicycle infrastructure in 2019 in the city of Omaha, Nebraska. Specifically, we first visually compare cycling traffic changes in 2019 to those from the previous two years (2017-2018) using data extracted from the Strava fitness app. Then, we use a new three-step machine-learning approach to quantify the impact of signage while controlling for weather, demographics, and street characteristics. The steps are as follows: Step 1 (modeling and validation) build and train a model from the available 2017 crowdsourced data (i.e., Strava, Census, and weather) that accurately predicts the cycling traffic data for any street within the study area in 2018; Step 2 (prediction) use the model from Step 1 to predict bicycle traffic in 2019 while assuming new signage was not added; Step 3 (impact evaluation) use the difference in prediction from actual traffic in 2019 as evidence of the likely impact of signage. While our work does not demonstrate causality, it does demonstrate an inexpensive method, using readily-available data, to identify changing trends in bicycling over the same time that new infrastructure investments are being added.


Language: en

Keywords

bicycle signage; Cycling; cycling infrastructure; machine learning; sharrows; strava

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print