SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mahdinia I, Mohammadnazar A, Khattak AJ. Accid. Anal. Prev. 2022; 177: e106829.

Copyright

(Copyright © 2022, Elsevier Publishing)

DOI

10.1016/j.aap.2022.106829

PMID

36088667

Abstract

Fatalities and severe injuries among vulnerable road users, particularly pedestrians, are rising. In addition to the loss of life, about 6,000 annual pedestrian deaths in the U.S. cost society about $6 billion. Contrary to the assumption that all fatal pedestrian-involved crashes are similar, instantaneous death is substantially more severe than death that occurs several days after the crash. Instead of homogenizing all fatal pedestrian crashes, this study takes into account the severity of fatal injury crashes as a timeline based on the survival time of pedestrians. This study extracts valuable information from fatal crashes by examining pedestrians' survival time ranging from early death to death within 30 days of the crash. The Fatality Analysis Reporting System dataset is utilized from 2015 to 2018. The emergency medical service (EMS) response time is the key post-crash measure, while controlling for pedestrian, driver, roadway, and environmental characteristics. Notably, the response time and survival time can cause endogeneity, i.e., the response times may be shorter for more severe crashes. Due to the spatial and temporal nature of traffic crashes, to extract the association of different variables with pedestrians' survival time, a geographically and temporally weighted truncated regression with a two-stage residual inclusion treatment (local model) is estimated. The local model can overcome the endogeneity limitation (between EMS response time and survival time) and uncover the potentially spatially and temporally varying correlates of pedestrians' survival time with associated factors to account for unobserved heterogeneity. Moreover, to verify the variations are noticeable, a truncated regression with the two-stage residual inclusion treatment is developed (global model). The modeling results indicate that while capturing the unobserved heterogeneity, the local model outperformed the global model. The empirical results show that EMS response time, speeding, and some pedestrian behaviors are the most important factors that affect pedestrians' survival time in fatal injury crashes. However, the effect of factors on pedestrians' survival time is noticeably varied spatially and temporally. The results and their implications are discussed in detail in the paper.


Language: en

Keywords

Heterogeneity; Emergency medical service response time; Endogeneity; Pedestrian time-to-death; Survival time

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print