SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhu S, Wu Z, Wang Y, Jiang Y, Gu R, Zhong M, Jiang X, Shen B, Zhu J, Yan J, Pan Y, Zhang L. Brain Sci. 2022; 12(9): e1213.

Copyright

(Copyright © 2022, Switzerland Molecular Diversity Preservation International (MDPI) AG)

DOI

10.3390/brainsci12091213

PMID

36138949

Abstract

Gait disturbance is a prototypical feature of Parkinson's disease (PD), and the quantification of gait using wearable sensors is promising. This study aimed to identify gait impairment in the early and progressive stages of PD according to the Hoehn and Yahr (H-Y) scale. A total of 138 PD patients and 56 healthy controls (HCs) were included in our research. We collected gait parameters using the JiBuEn gait-analysis system. For spatiotemporal gait parameters and kinematic gait parameters, we observed significant differences in stride length (SL), gait velocity, the variability of SL, heel strike angle, and the range of motion (ROM) of the ankle, knee, and hip joints between HCs and PD patients in H-Y Ⅰ-Ⅱ. The changes worsened with the progression of PD. The differences in the asymmetry index of the SL and ROM of the hip were found between HCs and patients in H-Y Ⅳ. Additionally, these gait parameters were significantly associated with Unified Parkinson's Disease Rating Scale and Parkinson's Disease Questionnaire-39. This study demonstrated that gait impairment occurs in the early stage of PD and deteriorates with the progression of the disease. The gait parameters mentioned above may help to detect PD earlier and assess the progression of PD.


Language: en

Keywords

walking; Parkinson’s disease; gait analysis; wearable sensors

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print