SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cardone D, Perpetuini D, Filippini C, Mancini L, Nocco S, Tritto M, Rinella S, Giacobbe A, Fallica G, Ricci F, Gallina S, Merla A. Sensors (Basel) 2022; 22(19): e7300.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22197300

PMID

36236399

Abstract

Mental workload (MW) represents the amount of brain resources required to perform concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance Systems, given its correlation with traffic accidents risk. In the present research, two cognitive tests (Digit Span Test-DST and Ray Auditory Verbal Learning Test-RAVLT) were administered to participants while driving in a simulated environment. The tests were chosen to investigate the drivers' response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR) thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV features. The best classifier performances were reached by the multimodal IR + HRV features-based classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%, average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73; RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results demonstrated the possibility to assess drivers' MW levels with high accuracy, also using a completely non-contact and non-invasive technique alone, representing a key advancement with respect to the state of the art in traffic accident prevention.


Language: en

Keywords

ADAS; automotive ergonomics; driver monitoring; infrared imaging; mental workload

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print