SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cao CF, Yu B, Huang J, Feng XL, Lv LY, Sun FN, Tang LC, Feng J, Song P, Wang H. ACS Nano 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, American Chemical Society)

DOI

10.1021/acsnano.2c08368

PMID

36468754

Abstract

A graphene oxide (GO)-based smart fire alarm sensor (FAS) has gained rapidly increasing research interest in fire safety fields recently. However, it still remains a huge challenge to obtain desirable GO-based FAS materials with integrated performances of mechanical flexibility/robustness, harsh environment-tolerance, high-temperature resistance, and reliable fire warning and protection. In this work, based on bionic design, the supermolecule melamine diborate (M·2B) was combined with GO nanosheets to form supramolecular cross-linking nanosystems, and the corresponding GO-M·2B (GO/MB) hybrid papers with a nacre-like micro/nano structure were successfully fabricated via a gel-dry method. The optimized GO/MB paper exhibits enhanced mechanical properties, e.g., tensile strength and toughness up to ∼122 MPa and ∼1.72 MJ/m(3), respectively, which is ∼3.5 and ∼6.6 times higher than those of the GO paper. Besides, it also shows excellent structural stability even under acid/alkaline solution immersion and water bath ultrasonication conditions. Furthermore, due to the presence of promoting reduction effect and atom doping reactions in GO network, the resulting GO/MB network displays exceptional high-temperature resistance, sensitive fire alarm response (∼0.72 s), and ultralong alarming time (>1200 s), showing promising fire safety and protection application prospects as desirable FAS and fire shielding material with excellent comprehensive performances. Therefore, this work provides inspiration for the design and fabrication of high-performance GO-based smart materials that combine fire shielding and alarm functions.


Language: en

Keywords

flame retardancy; biomimetic; fire warning; mechanical property; supramolecular nanosystem

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print