SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu X, Zhang S, Wang E, Zhang Z, Wang Y, Yang S. Int. J. Environ. Res. Public Health 2022; 20(1): e392.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph20010392

PMID

36612712

Abstract

Rockburst is a major disaster in deep mining, restricting the safety and the production efficiency of the Laohutai Coal Mine in Fushun, Liaoning Province. To predict and prevent coalmine rockbursts, a comprehensive method based on multi-instrument monitoring is proposed by using a YDD16 acoustic-electromagnetic monitor and microseismic monitoring system, including microseismic (MS) monitoring, electromagnetic radiation (EMR) monitoring, and acoustic emission (AE) monitoring. Field investigation shows that MS, AE, and EMR signals have abnormal precursors before rockbursts in a new working face. Based on the fluctuation theory and D-S evidence theory, the multi-index geophysical monitoring and early warning technology for rockburst disasters in the Laohutai Coal Mine are established. The method has been applied to the prediction of rockbursts in the Laohutai Coal Mine. The application shows that the acoustic-electromagnetic synchronous monitoring and early warning technology can accurately identify the potential rockburst risk and trigger an early warning, which is more reliable than a single method. The case study of the Laohutai rockburst shows that the joint early warning method of multi-instrument comprehensive monitoring can predict the possibility of rockbursts.


Language: en

Keywords

acoustic emission; early warning; electromagnetic radiation; microseismic; rockburst

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print