SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Goyal D, Kumar H. ACS Chem. Neurosci. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, American Chemical Society)

DOI

10.1021/acschemneuro.2c00643

PMID

36787542

Abstract

Endothelial damage, astrogliosis, microgliosis, and neuronal degeneration are the most common events after spinal cord injury (SCI). Studies highlighted that studying the spatiotemporal profile of these events might provide a deeper understanding of the pathophysiology of SCI. For imaging of these events, available conventional techniques such as 2-dimensional histology and immunohistochemistry (IHC) are well established and frequently used to visualize and detect the altered expression of the protein of interest involved in these events. However, the technique requires the physical sectioning of the tissue, and results are also open to misinterpretation. Currently, researchers are focusing more attention toward the advanced tools for imaging the spinal cord's various physiological and pathological parameters. The tools include two-photon imaging, light sheet fluorescence microscopy, in vivo imaging system with fluorescent probes, and in vivo chemical and fluorescent protein-expressing viral-tracers. These techniques outperform the limitations associated with conventional techniques in various aspects, such as optical sectioning of tissue, 3D reconstructed imaging, and imaging of particular planes of interest. In addition to this, these techniques are minimally invasive and less time-consuming. In this review, we will discuss the various advanced imaging methodologies that will evolve in the future to explore the fundamental mechanisms after SCI.


Language: en

Keywords

Spinal cord injury; 3D imaging; genetically modified tracers; spatiotemporal mapping

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print