SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lee K. Brain Sci. 2023; 13(2): e225.

Copyright

(Copyright © 2023, Switzerland Molecular Diversity Preservation International (MDPI) AG)

DOI

10.3390/brainsci13020225

PMID

36831768

PMCID

PMC9954639

Abstract

This study aimed to determine the effects of balance training with weight shift-triggered electrical stimulation to improve balance, lower-extremity motor function, and activities of daily living in patients with stroke. The participants were randomly allocated to the balance training with electrical stimulation group (BT-ESG, n = 29) or the balance training group (BTG, n = 30). Both groups were trained 5 times per week for 6 weeks for 50 min per session. To evaluate static balance, postural sway was assessed and dynamic balance was assessed using the Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and functional reach test (FRT). Lower-extremity motor function was assessed using the Fugl-Meyer assessment. Daily activities were assessed using the Modified Barthel Index. As for static balance, BT-ESG showed a significant improvement compared to BTG in postural swat in both the eyes-open (velocity moment; effect size, 0.88; 95% confidence interval, -1.16 to -1.30), or eyes-closed state (velocity moment; effect size, 0.81; 95% confidence interval, -1.22 to -0.27). Dynamic balance, which includes TUG (effect size, 0.90; 95% confidence interval, -4.67 to -1.25), BBS (effect size, 1.26; 95% confidence interval, -2.84 to 6.83), and FRT (effect size, 1.45; 95% confidence interval, 1.92 to 4.08), in addition to lower-extremity motor function (effect size, 1.38; 95% confidence interval, 2.25 to 4.97), and activities of daily living (effect size, 2.04; 95% confidence interval, 2.04 to 937), showed significant improvement in BT-ESG compared to BTG. These results suggest that balance training with weight shift-triggered electrical stimulation effectively improves balance, lower-extremity motor function, and activities of daily living in patients with stroke.


Language: en

Keywords

balance; stroke; electrical stimulation; weight-bearing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print