SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Qiao M, Sha Z. Hum. Mov. Sci. 2023; 89: e103086.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.humov.2023.103086

PMID

37119660

Abstract

It is commonly thought that at prescribed speeds humans choose gait parameters that minimize the cost of transportation. However, it is unclear whether and how the relationship between step length and step frequency is affected by the additional physiological factors caused by constraints. We performed a series of experiments to understand the selection of gait parameters under different constraints from a probabilistic perspective. First, we show that the effect of constraining step length on step frequency (i.e., monotonically decrease, Experiment I) is different from the effect of constraining step frequency on step length (i.e., inverted-U, Experiment II). Using the results from Experiment I and II, we summarized the marginal distribution of step length and step frequency and built their joint distribution in a probabilistic model. The probabilistic model predicts the selection of gait parameters by achieving the maximum probability of joint distribution of step length and step frequency. In Experiment III, the probabilistic model could well predict gait parameters at prescribed speeds, and it is similar to minimizing the cost of transportation. Finally, we show that the distribution of step length and step frequency were completely different between constrained and non-constrained walking. We argue that constraints in walking are major factors determining how humans choose gait parameters due to their involvement of mediators, i.e., attention or active control. Using the probabilistic model to account for gait parameters has an advantage compared with fixed-parameter models in that it can still include the effect of hidden mechanical, neurophysiological, or psychological variables by grouping them into distribution curves.


Language: en

Keywords

Joint distribution; Marginal distribution; Probabilistic model; Step frequency; Step length

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print