SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Perelló-March J, Burns CG, Woodman R, Birrell S, Elliott MT. Hum. Factors 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Human Factors and Ergonomics Society, Publisher SAGE Publishing)

DOI

10.1177/00187208231185705

PMID

37357740

Abstract

OBJECTIVE: Using brain haemodynamic responses to measure perceived risk from traffic complexity during automated driving.

BACKGROUND: Although well-established during manual driving, the effects of driver risk perception during automated driving remain unknown. The use of fNIRS in this paper for assessing drivers' states posits it could become a novel method for measuring risk perception.

METHODS: Twenty-three volunteers participated in an empirical driving simulator experiment with automated driving capability. Driving conditions involved suburban and urban scenarios with varying levels of traffic complexity, culminating in an unexpected hazardous event. Perceived risk was measured via fNIRS within the prefrontal cortical haemoglobin oxygenation and from self-reports.

RESULTS: Prefrontal cortical haemoglobin oxygenation levels significantly increased, following self-reported perceived risk and traffic complexity, particularly during the hazardous scenario.

CONCLUSION: This paper has demonstrated that fNIRS is a valuable research tool for measuring variations in perceived risk from traffic complexity during highly automated driving. Even though the responsibility over the driving task is delegated to the automated system and dispositional trust is high, drivers perceive moderate risk when traffic complexity builds up gradually, reflected in a corresponding significant increase in blood oxygenation levels, with both subjective (self-reports) and objective (fNIRS) increasing further during the hazardous scenario. APPLICATION: Little is known regarding the effects of drivers' risk perception with automated driving. Building upon our experimental findings, future work can use fNIRS to investigate the mental processes for risk assessment and the effects of perceived risk on driving behaviours to promote the safe adoption of automated driving technology.


Language: en

Keywords

risk assessment; autonomous driving; aggressive and risky driving; cognitive neuroscience; human-automation interaction

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print