SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ogunrinde I, Bernadin S. Sensors (Basel) 2023; 23(14).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23146255

PMID

37514550

PMCID

PMC10383339

Abstract

AVs are affected by reduced maneuverability and performance due to the degradation of sensor performances in fog. Such degradation can cause significant object detection errors in AVs' safety-critical conditions. For instance, YOLOv5 performs well under favorable weather but is affected by mis-detections and false positives due to atmospheric scattering caused by fog particles. The existing deep object detection techniques often exhibit a high degree of accuracy. Their drawback is being sluggish in object detection in fog. Object detection methods with a fast detection speed have been obtained using deep learning at the expense of accuracy. The problem of the lack of balance between detection speed and accuracy in fog persists. This paper presents an improved YOLOv5-based multi-sensor fusion network that combines radar object detection with a camera image bounding box. We transformed radar detection by mapping the radar detections into a two-dimensional image coordinate and projected the resultant radar image onto the camera image. Using the attention mechanism, we emphasized and improved the important feature representation used for object detection while reducing high-level feature information loss. We trained and tested our multi-sensor fusion network on clear and multi-fog weather datasets obtained from the CARLA simulator. Our results show that the proposed method significantly enhances the detection of small and distant objects. Our small CR-YOLOnet model best strikes a balance between accuracy and speed, with an accuracy of 0.849 at 69 fps.


Language: en

Keywords

autonomous vehicles; deep learning; object detection; adverse weather; attention module; camera–radar; fog; sensor fusion

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print