SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pan H, He H, Wang Y, Cheng Y, Dai Z. J. Saf. Res. 2023; 86: 148-163.

Copyright

(Copyright © 2023, U.S. National Safety Council, Publisher Elsevier Publishing)

DOI

10.1016/j.jsr.2023.05.006

PMID

37718042

Abstract

INTRODUCTION: Vehicle automation is thought to improve road safety since numerous accidents are caused by human error. However, the lack of active involvement and monotonous driving environments due to automation may contribute to drivers' passive fatigue and sleepiness. Previous research indicated that non-driving related tasks (NDRTs) were beneficial in maintaining drivers' arousal levels but detrimental to takeover performance.

METHOD: A 3·2 mixed design (between subjects: driving condition; within subjects: takeover orders) simulator experiment was conducted to explore the development of driver sleepiness in prolonged automated driving context and the effect of NDRTs on driver sleepiness development, and to further evaluate the impact of driver sleepiness and NDRTs on takeover performance. Sixty-three participants were randomly assigned to three driving conditions, each lasting 60 min: automated driving while performing driving environment monitoring task; visual NDRTs task; and visual NDRTs with scheduled driving environment monitoring task. Two hazardous events occurring at about the 5th and 55th min needed to be handled during the respective driving.

RESULTS: Drivers performing monitoring tasks had a faster development of driver sleepiness than drivers in the other two conditions in terms of both subjective and objective indicators. Takeover performance of drivers performing monitoring task were undermined due to driver sleepiness in terms of braking and steering reaction times, the time between saccade latency and braking or steering reaction times, and so forth. Additionally, NDRTs impaired the drivers' takeover ability in terms of saccade latency, max braking pedal input, max steering velocity, minimum time to collision, and so forth. This study shows that NDRTs with scheduled road environment monitoring task improve takeover performance during prolonged automated driving by helping to maintain driver alertness. PRACTICAL APPLICATIONS: Findings from this work provide some technical assistance in the development of driver sleepiness monitoring systems for conditionally automated vehicles.


Language: en

Keywords

Driver sleepiness; Non-driving related tasks; Prolonged automated driving; Takeover performances

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print