SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li Q, Wang Z, Kolla RDTN, Li M, Yang R, Lin PS, Li X. J. Saf. Res. 2023; 86: 253-261.

Copyright

(Copyright © 2023, U.S. National Safety Council, Publisher Elsevier Publishing)

DOI

10.1016/j.jsr.2023.07.004

PMID

37718053

Abstract

INTRODUCTION: Nighttime crashes account for 74% of pedestrian fatalities in the United States, and reduced visibility is a significant cause of nighttime pedestrian crashes. Maintaining sufficient and uniform roadway lighting is an effective countermeasure to improve pedestrian visibility and prevent nighttime pedestrian crashes and injuries. Previous studies have not quantified the safety effects of roadway photometric patterns (i.e., average lighting level and uniformity) on nighttime pedestrian crashes on roadway segments.

METHOD: This study investigated the association between two roadway photometric criteria (horizontal illuminance mean representing average lighting level and horizontal illuminance standard deviation representing lighting uniformity) and nighttime pedestrian crash occurrence in Florida roadway segments. The matched case-control method was used to decouple the confounding effects between the illuminance mean and standard deviation. Statistically-significant crash modification factors (CMFs) were developed to quantify the safety effects of the mean and standard deviation of horizontal illuminance on nighttime pedestrian crashes.

RESULTS: The results show that if the average lighting level on a roadway segment is increased from a low illuminance mean (<0.2 foot-candle [fc]) to a medium illuminance mean [0.2 fc, 0.5 fc], a medium-high illuminance mean (0.5 fc, 1.0 fc], and a high illuminance mean (>1.0 fc), the relative likelihood of nighttime pedestrian crashes on midblock segments in Florida tends to be reduced by 77.5% (CMF = 0.225), 81.2% (CMF = 0.188), and 85.5% (CMF = 0.145), respectively. PRACTICAL APPLICATIONS: A poor uniformity (illuminance standard deviation ≥ 0.52 fc) is likely to increase the relative likelihood of nighttime pedestrian crashes on midblock segments in Florida by 80.3% (CMF = 1.803) compared to good uniformity (illuminance standard deviation < 0.52 fc).


Language: en

Keywords

Street lighting; CMF; Crash modification factor; Horizontal illuminance; Matched case-control study; Nighttime pedestrian crash

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print