SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Boubekraoui H, Maouni Y, Ghallab A, Draoui M, Maouni A. Fire (Basel) 2023; 6(8): e314.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire6080314

PMID

unavailable

Abstract

In recent years, changes in climate, land cover, and sociodemographic dynamics have created new challenges in wildfire management. As a result, advanced and integrated approaches in wildfire science have emerged. The objective of our study is to use geospatial analysis to identify strategic responses to wildfires in the Tangier-Tetouan-Al Hoceima (TTA) region, widely reputed to exhibit the most significant incidences of wildfires in Morocco. We adopted a combined approach, using burned area products (Fire_CCI51: 2002-2020) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and active fires from the Fire Information for Resource Management System (FIRMS: 2001-2022) and processing them with spatiotemporal statistical methods: optimized hotspot analysis (OHA) and emerging hotspot analysis (EHA). The main findings indicate that the TTA region recorded an average of 39.78 km2/year of burned areas, mostly located in forests (74%), mainly cork oak and matorral stands (50%). The OHA detected hotspots covering 2081 km2, with 63% concentrated in the provinces of Chefchaouen and Larache. Meanwhile, clusters of EHA extended over 740 km2 and were composed of the oscillating coldspot (OCS) and oscillating hotspot (OHS) patterns at 50% and 30%, respectively. Additionally, an average of 149 fires/year occurred, located mostly in forests (75%), mainly cork oak and matorral stands (61%). The OHA detected active fire hotspots covering 3904 km2, with 60% located in the provinces of Chefchaouen and Larache. Clusters of EHA over 941 km2 were composed of the oscillating hotspot (OHS) and new hotspot (NHS) patterns at 57% and 25%, respectively. The prevalence of the oscillating and new models mirrors, respectively, the substantial fluctuations in wildfires within the region alternating between periods of high and low wildfire activities and the marked increase in fires in recent times, which has occasioned the emergence of novel hotspots. Additionally, we identified six homogeneous wildfire zones to which we assigned three strategic responses: "maintain" (73% of the territory), "monitor and raise awareness" (14% of the territory), and "reinforce" (13% of the territory). These strategies address current wildfire management measures, which include prevention, risk analysis, preparation, intervention, and rehabilitation. To better allocate firefighting resources, strategic responses were classified into four priorities (very high, high, medium, and low). Last, the wildfire zoning and strategic responses were validated using burned areas from 2021 to 2023, and a global scheme was suggested to assess the effectiveness of future wildfire measures.


Language: en

Keywords

forest fires; hotspots; northern Morocco; spatiotemporal trends; strategic responses; wildfires

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print