SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Delang N, Irwin C, Peek AL, McGregor IS, Desbrow B, McCartney D. J. Neurochem. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, John Wiley and Sons)

DOI

10.1111/jnc.16000

PMID

37908148

Abstract

The aim of this study was to systematically review prior research investigating the effects of contact/collision sport participation on neurometabolite levels in the absence of concussion. Four online databases were searched to identify studies that measured neurometabolite levels in contact/collision sport athletes (without concussion) using proton ((1) H) or phosphorus ((31) P) magnetic resonance spectroscopy (MRS). All study designs were acceptable for inclusion. Meta-analytic procedures were used to quantify the effect of contact/collision sport participation on neurometabolite levels and explore the impact of specific moderating factors (where sufficient data were available). Narrative synthesis was used to describe outcomes that could not be meta-analysed. Nine observational studies involving 300 contact/collision sport athletes were identified. Six studies (providing 112 effect estimates) employed longitudinal (cohort) designs and three (that could not be meta-analysed) employed case-control designs. N-acetylaspartate (NAA; g = -0.331, p = 0.013) and total creatine (tCr; creatine + phosphocreatine; g = -0.524, p = 0.029), but not glutamate-glutamine (Glx), myo-inositol (mI) or total choline (tCho; choline-containing compounds; p's > 0.05), decreased between the pre-season and mid-/post-season period. Several moderators were statistically significant, including: sex (Glx: 6 female/23 male, g = -0.549, p = 0.013), sport played (Glx: 22 American football/4 association football [soccer], g = 0.724, p = 0.031), brain region (mI: 2 corpus callosum/9 motor cortex, g = -0.804, p = 0.015), and the MRS quantification approach (mI: 18 absolute/3 tCr-referenced, g = 0.619, p = 0.003; and tCho: 18 absolute/3 tCr-referenced, g = 0.554, p = 0.005). In case-control studies, contact/collision sport athletes had higher levels of mI, but not NAA or tCr compared to non-contact sport athletes and non-athlete controls. Overall, this review suggests that contact/collision sport participation has the potential to alter neurometabolites measured via (1) H MRS in the absence of concussion. However, further research employing more rigorous and consistent methodologies (e.g. interventional studies with consistent (1) H MRS pulse sequences and quantifications) is required to confirm and better understand the clinical relevance of observed effects.


Language: en

Keywords

brain chemistry; contact sport; neuroimaging; subconcussive impacts

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print