SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu J, Zhang X. Sensors (Basel) 2023; 23(22): e9140.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23229140

PMID

unavailable

Abstract

Tunnel cracks are the main factors that cause damage and collapse of tunnel structures. How to detect tunnel cracks efficiently and avoid safety accidents caused by tunnel cracks effectively is a research hotspot at present. In order to meet the need for efficient detection of tunnel cracks, the tunnel crack detection method based on improved Retinex and deep learning is proposed in this paper. The tunnel crack images collected by optical imaging equipment are used to improve the contrast information of tunnel crack images using the image enhancement algorithm, and this image enhancement algorithm has the function of multi-scale Retinex decomposition with improved central filtering. An improved VGG19 network model is constructed to achieve efficient segmentation of tunnel crack images through deep learning methods and then form the segmented binary image. The Zhang-Suen fast parallel-thinning method is used to obtain the skeleton map of the single-layer pixel, and the length and width information of the tunnel cracks are obtained. The feasibility and effectiveness of the proposed method are verified by experiments. Compared with other methods in the literature, the maximum deviation in the length of the tunnel crack is about 5 mm, and the maximum deviation in the width of the tunnel crack is about 0.8 mm. The experimental results show that the proposed method has a shorter detection time and higher detection accuracy. The research results of this paper can provide a strong basis for the health evaluation of tunnels.


Language: en

Keywords

crack segmentation; deep learning; multi-scale Retinex decomposition; tunnel cracks

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print