SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Niu S, Liu W, Yan S, Liu Q. Math. Biosci. Eng. 2023; 20(12): 20809-20827.

Copyright

(Copyright © 2023, American Institute of Mathematical Sciences)

DOI

10.3934/mbe.2023921

PMID

38124577

Abstract

With the rapid development of 5G wireless communication and sensing technology, the Internet of Vehicles (IoV) will establish a widespread network between vehicles and roadside infrastructure. The collected road information is transferred to the cloud server with the assistance of roadside infrastructure, where it is stored and made available to other vehicles as a resource. However, in an open cloud environment, message confidentiality and vehicle identity privacy are severely compromised, and current attribute-based encryption algorithms still burden vehicles with large computational costs. In order to resolve these issues, we propose a message-sharing scheme in IoV based on edge computing. To start, we utilize attribute-based encryption techniques to protect the communications being delivered. We introduce edge computing, in which the vehicle outsources some operations in encryption and decryption to roadside units to reduce the vehicle's computational load. Second, to guarantee the integrity of the message and the security of the vehicle identity, we utilize anonymous identity-based signature technology. At the same time, we can batch verify the message, which further reduces the time and transmission of verifying a large number of message signatures. Based on the computational Diffie-Hellman problem, it is demonstrated that the proposed scheme is secure under the random oracle model. Finally, the performance analysis results show that our work is more computationally efficient compared to existing schemes and is more suitable for actual vehicle networking.


Language: en

Keywords

edge computing; attribute-based encryption; authentication; batch verification; Internet of Vehicles (IoV)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print