SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhou C, Huang C, Huang L, Xie C, Zhu X, Huang T. Sensors (Basel) 2024; 24(2): e553.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24020553

PMID

unavailable

Abstract

With the rapid development of unmanned aerial vehicle technology and its increasing application across various fields, current airspace resources are insufficient for unmanned aerial vehicles’ needs. This paper, taking Zigong General Aviation Airport in Sichuan as a case study, explores the lateral safety spacing in a mixed operation mode of unmanned aerial vehicles and manned aircraft. Currently, there are no standardized regulations for the safe spacing of the fusion operation of unmanned and manned aircraft. Theoretical research is essential to provide a reference for actual operations. It introduces the UM-Event (unmanned and manned aircraft-event) collision risk model, an adaptation of the Event collision risk model, considering factors like communication, navigation, surveillance performance, human factors, collision avoidance equipment performance, and meteorology. Safety spacing was determined via simulation experiments and actual data analysis, adhering to the target safety level (TSL).

FINDINGS indicate that surveillance performance has a minor impact on safety spacing, while communication and navigation significantly influence it. The safety spacing, influenced solely by CNS (communication performance, navigation performance, surveillance performance) and combined factors, increased from 4.42 to 4.47 nautical miles. These results offer theoretical guidance for unmanned aerial vehicle safety in non-segregated airspace.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print