SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Stoilov V, Sinapov P, Slavchev S, Maznichki V, Purgic S. Appl. Sci. (Basel) 2024; 14(2): e860.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/app14020860

PMID

unavailable

Abstract

This study proposes a theoretical method for evaluating the "safety against derailment" indicator of a specialized train composition for the transportation of very long rails. A composition of nine wagons, suitable for the transportation of rails with a length of 120 m in three layers, is considered. For the remaining recommended rail lengths, the number of wagons is reduced or increased, with the calculation model being modified depending on the required configuration. When the composition is in a curve with the minimum radius (R = 150 m), the rails bend, and some of them come into contact with the vertical stanchions of the wagon and cause additional lateral forces. These forces are then transferred through the wagon body, central pivot, bogie frame, and wheels and act on the wheel-rail contact points. They could potentially lead to derailment of the train composition. The goal of this study is to determine the additional lateral forces that arise because of the bent rails. For the purposes of this study, the finite element method was used. Based on the displacements of the support points of the rails (caused by the geometry of the curve), the bending line of the elastic load is determined and the forces in the supports are calculated. The resulting forces are considered when determining the derailment safety criterion. The analysis of the results shows that the wagon with fixing blocks is the most at risk of derailment. The front and intermediate wagons have criterion values very close to that of the empty wagon. This shows that the emerging horizontal elastic forces do not significantly influence the derailment process. The obtained results show that the transportation of long rails with specialized train composition can be realized on four layers. This will significantly increase the efficiency of delivering new long rails.


Language: en

Keywords

derailment; FEM; long rails transportation; railway

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print