SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Billot G, Marinus BG, Harri K, Moiny F. J. Acoust. Soc. Am. 2024; 155(2): 1021-1035.

Copyright

(Copyright © 2024, American Institute of Physics)

DOI

10.1121/10.0024725

PMID

38341738

Abstract

Acoustic events exceeding a certain threshold of intensity cannot benefit from a linearization of the governing wave equation, posing an additional burden on the numerical modelling. Weak shock theory associates nonlinearity with the generation of high frequency harmonics that compensate for atmospheric attenuation. Overlooking the persistence of this phenomenon at large distances can lead to mispredictions in gun detection procedures, noise abatement protocols, and auditory risk assessment. The state-of-the-art mostly addresses aircraft jet noise, a stationary and largely random type of signal. The extension of such conclusions to muzzle blasts requires caution in considering their peculiar impulsive and broadband nature. A methodology based on the time and frequency analysis of an experimental dataset of eight calibres intends to find quantitative metrics linked to acoustic nonlinearity in outdoor muzzle blast propagation. Propagating three waveforms (SCAR-L 7.62 mm, Browning 9 mm, and Howitzer 105 mm) up to 300 [m] with the in-house numerical solver based on the nonlinear progressive wave equation, demonstrates that the propagation does not downgrade to truly linear.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print