SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lu Z, Mao C, Tan Y, Liu T, Li X, Li Z, Zhu W, Sun Y. J. Biomech. 2024; 166: e112029.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.jbiomech.2024.112029

PMID

38447428

Abstract

This study investigates the impact of increasing backpack load on the gait of adolescents during stair descent. Sixteen healthy male students (age = 12.9 ± 0.6 years) were required to descend the stairs in 4 loaded conditions. The kinematic, kinetic, and EMG data were collected synchronously and gait parameters, especially indicators of balance control, were analyzed. The posterior tilt angles (COM-COP IA in the sagittal plane) (0 %-42 %, 48 %-53 %, 58 %-91 %, p < 0.01), trunk anterior tilt angles (9-33 %, 51-65 %, p < 0.01), and CV of stride length (p < 0.01) increased with the backpack load. The COM-Step edge separation decreased with the increased backload (p < 0.01). In addition, the hip flexion torque (25-40 %, 45-51 %, p < 0.01), the rectus femoris activation, and the hip stiffness increased significantly as the load up to 15 % Body Weight (BW)and 20 % BW. The increasing backpack load may affect adolescent's stair descent gait. Especially as the load was up to 15 % BW, the adolescents' bodies tended to tilt backwards relative to the support foot during the single stance phase. They may activate the hip flexors and tilt forward the trunk to recover from the balance perturbation, which was associated with increased hip flexion torques. This adjustment was more pronounced with the increasing backpack load. However, excessive forward flexion may increase the risk of forward falls. The boundaries of adjustment need further research in the future.

FINDINGS from this study provide baseline information on the intrinsic mechanisms of balance control during stair descent.


Language: en

Keywords

Adolescents; Backpack load; Balance control; Stair descent

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print