SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cheng Q, Li H, Yang Y, Ling J, Huang X. Sensors (Basel) 2024; 24(5).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24051386

PMID

38474923

PMCID

PMC10935380

Abstract

Risky driving is a major factor in traffic incidents, necessitating constant monitoring and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack of suitable data for detecting risky driving in traffic surveillance settings remains a significant challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection, is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras. Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the resilience and generalizability of algorithms for detecting risky driving. Further, to address the scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised method founded on a teacher-student model is introduced, aiming at bypassing the time-consuming and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN) to amplify spatial perception capabilities and amalgamate features at varying scales and levels, thus boosting detection precision. Extensive experiments on widely utilized datasets, including the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the proposed DGMB-Net.


Language: en

Keywords

AI and deep learning; intelligent transportation system; risky driving detection; semi-supervised learning; urban traffic safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print