SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hacker B, Imms P, Dharani AM, Zhu J, Chowdhury NF, Chaudhari NN, Irimia A. J. Neurotrauma 2024; ePub(ePub): ePub.

Copyright

(Copyright © 2024, Mary Ann Liebert Publishers)

DOI

10.1089/neu.2023.0509

PMID

38482793

Abstract

Accurate early diagnosis of concussion is useful to prevent sequelae and improve neurocognitive outcomes. Early after head impact, concussion diagnosis may be doubtful in persons whose neurological, neuroradiological, and/or neurocognitive examinations are equivocal. Such individuals can benefit from novel accurate assessments that complement clinical diagnostics. We introduce a Bayesian machine learning classifier to identify concussion through cortico-cortical connectome mapping from magnetic resonance imaging in persons with quasi-normal cognition and without neuroradiological findings. Classifier features are generated from connectivity matrices specifying the mean fractional anisotropy of white matter connections linking brain structures. Each connection's saliency to classification was quantified by training individual classifier instantiations using a single feature type. The classifier was tested on a discovery sample of 92 healthy controls (HCs; 26 females, age μ ± σ: 39.8 ± 15.5 years) and 471 adult mTBI patients with (158 females, age μ ± σ: 38.4 ± 5.9 years).

RESULTS were replicated in an independent validation sample of 256 HCs (149 females, age μ ± σ: 55.3 ± 12.1 years) and 126 patients with concussion (46 females, age μ ± σ: 39.0 ± 17.7 years). Classifier accuracy exceeds 99% in both samples, suggesting robust generalizability to new samples. Notably, thirteen bilateral cortico-cortical connection pairs predict diagnostic status with accuracy exceeding 99% in both discovery and validation samples. Many such connection pairs are between prefrontal cortex structures, fronto-limbic and fronto-subcortical structures, and occipito-temporal structures in the ventral ('what') visual stream. This and related connectivity form a highly salient network of brain connections that is particularly vulnerable to concussion. Because these connections are important in mediating cognitive control, memory, and attention, our findings explain the high frequency of cognitive disturbances after concussion. Our classifier was trained and validated on concussed participants with cognitive profiles very similar to those of HCs. This suggests that the classifier can complement current diagnostics by providing independent information in clinical contexts where patients have quasi-normal cognition but where concussion diagnosis stands to benefit from additional evidence.


Language: en

Keywords

HEAD TRAUMA; MRI; NEUROPSYCHOLOGY; TRAUMATIC BRAIN INJURY

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print