SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu D, Park Y. Sensors (Basel) 2024; 24(7): e2295.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24072295

PMID

38610506

Abstract

Anonymous networks, which aim primarily to protect user identities, have gained prominence as tools for enhancing network security and anonymity. Nonetheless, these networks have become a platform for adversarial affairs and sources of suspicious attack traffic. To defend against unpredictable adversaries on the Internet, detecting anonymous network traffic has emerged as a necessity. Many supervised approaches to identify anonymous traffic have harnessed machine learning strategies. However, many require access to engineered datasets and complex architectures to extract the desired information. Due to the resistance of anonymous network traffic to traffic analysis and the scarcity of publicly available datasets, those approaches may need to improve their training efficiency and achieve a higher performance when it comes to anonymous traffic detection. This study utilizes feature engineering techniques to extract pattern information and rank the feature importance of the static traces of anonymous traffic. To leverage these pattern attributes effectively, we developed a reinforcement learning framework that encompasses four key components: states, actions, rewards, and state transitions. A lightweight system is devised to classify anonymous and non-anonymous network traffic. Subsequently, two fine-tuned thresholds are proposed to substitute the traditional labels in a binary classification system. The system will identify anonymous network traffic without reliance on labeled data. The experimental results underscore that the system can identify anonymous traffic with an accuracy rate exceeding 80% (when based on pattern information).


Language: en

Keywords

anonymous traffic; feature engineering; reinforcement learning; Tor; unsupervised learning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print